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What is synthetic data?

• A representation of things’ states and interactions 

that is not intended to match any snapshot of 

the system, but to provide a statistically 

accurate overall picture:

- people, places, things

- cells, cytokines, organs

- and their relationships

• A synthesis of incommensurate data

and models from many domains

• A coordinate system for incorporating 

new information and describing dynamics
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Why speak to IeDEA about synthetic data?

• “Real” system is one instance of a time-varying, 
random process in a huge space only partly observed.

• Planning relies on counterfactual analysis.

• Most alternatives sweep known errors under the rug.

• Synthesis provides a way to leverage data collection 
and harmonization efforts.



The real world is complicated
• “estimate engagement in care … in resource limited setting, … 

the outcome itself was missing due to loss to follow-up.”
Rebora, Paola et al. BMC Medical Research Methodology 16 (2016): 5

• “genetic …, viral … and environmental … factors influence CD4 
recovery. These factors differ markedly around the world …”
Geng, Elvin H et al. International Journal of Epidemiology 44.1 (2015): 251–263

• “…many practical studies assume away interference for the sake 
of simplicity. … ignoring interference can lead to completely 
wrong conclusions.”  Van der Laan, Mark J. Journal of causal inference 2.1 (2014): 13–74. PMC.

• “[W]e re-estimate the duration and relative infectivity of the 
acute phase, while accounting for … the retrospective cohort 
exclusion criteria and unmeasured heterogeneity in risk.”
Bellan SE, et al. (2015) PLoS Med 12(3): e1001801.

• “a significant proportion of seroconversion events in 

serodiscordant couples may be unlinked.” Eshleman et al. J Infect Dis. (2011)







• Usual Lessons: 
• Occam’s razor

• Information criteria for complexity control

Science with a Smile, 
Subramanian Raman 

An overly complex model has no predictive power!



• Alternative Lesson: 

• Use causal / generative / mechanistic models

• Representing arguably relevant mechanisms

• To simulate alternatives and compare to data

Science with a Smile, 
Subramanian Raman 

An overly complex model has no predictive power!



Unless it’s the correct model…

An overly complex model has no predictive power!
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The spherical elephant
and an even simpler, linear model

one parameter: slope
can be calibrated to 
data at A or B A

B

… with diametrically
opposed implications
for interventions

Is moving left a good way to get off the elephant? 
That depends on where you are.

Is PrEP a good way to reduce morbidity?
That, too, depends on where you are.



… lead to incorrect conclusions
even when they are locally correct.

Symptom: long-running disagreements, 
with all sides supported by “the evidence”

Overly simple models … 



… are guaranteed to mis-specify complex systems.
But there’s not enough data for a complex model.

So we’ll be satisfied with a mis-specified one.

Overly simple models … 
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To understand a property of the system:
• Sample the property

• Model its distribution

• Reason about the implications of the distribution
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To understand a property of the system:
• Sample the property

• Model its distribution

• Reason about the implications of the distribution

Worry about confounding, independence:

interactions among properties

Making effective use of data

In data-poor contexts, prior knowledge is key
e.g. parameterized distributions 



To understand interactions among properties:
• Sample them 

• Model their joint distribution

• Reason about the causal dependencies

Making effective use of data

In data-poor contexts, prior knowledge is key
e.g. synthetic data from simulated interactions 

Simulation: approximate answers to real questions,
not exact analysis for the wrong questions



Why treat synthetic information as data?

With trust, provenance, dynamic updates, simulation, …

• Assumptions are on the table, subject to tinkering

• Users need not understand models to use data

• Results are not “thrown over the fence”

• Experts in specific domains embed context in data
that is transparent to experts in other domains:

demography  trial design
pharmacodynamics + social psych  implementation



Characteristics of an ideal information resource

• Natural representation encourages 
transdisciplinary team science &
communities of practice 

• Attribution is easy, even automatic

• Models and results are reproducible

• Assumptions & limits on appropriate use are transparent

• Alternative hypotheses (models) are easily tested

• Supports an abductive reasoning loop: 
hypothesize, test, correct



• Natural representation encourages 
transdisciplinary team science &
communities of practice 

• Attribution is easy, even automatic

• Models and results are reproducible

• Assumptions & limits on appropriate use are transparent

• Alternative hypotheses (models) are easily tested

• Supports an abductive reasoning loop: 
hypothesize, test, correct

Building such a thing is still a research problem!

Characteristics of an ideal information resource



Why haven’t we done this already?

Computational issues are as hard as statistical ones:

• scalable digital library 

• efficient algorithms to access & process Big Data

• data sleuthing & licensing / Data Use Agreements

• testing & maintaining provenance at all stages

• designing systems for non-computing-experts
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Conclusions

• , p-values        , anything is publishable!!

• IeDEA provides unique opportunities to study
demographically, geographically targeted interventions.

• Synthetic information sets, e.g. populations, 
can complement the data collected in IeDEA.

• Fully realizing the promise of IeDEA will require 
new kinds of data management platforms.


